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ABSTRACT

This paper presents some properties and interrelationships of terminal reliability funcrions of probabilistic
communication networks with distinct element reliabilities. Based on topological techniques a synthesis pro-
cedure as well as realizability conditions are given, In addition, a uniqueness theorem is proved,

1. Introduction

A probabilistic communication network is a network in which each branch
is assigned a probability that the specific branch will function properly.
This probability is called the reliability of that branch. Thus this network
can be represented by a weighted linear graph [1] The probability of
successful communication between a specified pair of stations (terminals)
in the network, expressed in terms of branch reliabilities, is called the
terminal reliability function,

The analysis of the reliability of probabilistic communication networks
has been studied by various investigators [2], [3], [4]. Maxwell [5] has
discussed the synthesis of a prescribed terminal reliability function of a
two-terminal network in which all branches are assumed to have identical
reliabilities. This paper will consider networks with distinct branch relia-
bilities. The synthesis methods of a single prescribed reliability function
as well as two or more given functions corresponding to different pairs
of terminals will be discussed. Topological techniques are used here. All
terms, if not defined in this paper, may be found in a standard textbook

[1].

2. Basic definitions

Let the branch reliabilities of a network with e branches be p., p,, ...
b.. Then p; is the probability of branch j of the network that this’ branch
will function properly. The complements of these values are denoted by
P{'s Pg's +e.s P . The probability of transmission between any specified
pair of termmafs, expressed in terms of branch reliabilities and their
complements, is defined as a flevrminal reliability function, which is given
by

qi,i = mlpllpzy pe' + mzpllpzl p;_l pe+,._+m2ep1p2“_, P, (1)
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where m m, ...m, are either 1 or 0, depending on the

1 Mo, e, §
terminal-pair (i,j). Thatis, m is 1 if its associated combination of states
of the branches prov1des a transmission path between the terminals i and
j ; otherwise m, is 0. When a function is expressed as in equation (1),
it is said to be in its camnonical form, Kach term in the canonical form
is called a canonical term*, A network with v terminals has 3v(v-1) ter-
minal reliability functions if the network corresponds to a nonoriented
graph,

A path set is a set of branches of a communication path (path, in short)
between a pair of terminals. A path product is the product of the variables
associated with the elements in a path set. A canonical term is a path-
product tevm (or simply, path tevm) if its unprimed variables are those
of a path product and all other variables (in that term) are primed variables.
A canonical term is a secondary path-product teym (or simply, secondary
path tevm) if a proper subset of the set of all unprimed variables in the
term corresponds to those elements forming a path set.

. ig defined to be the collection of all the path sets between terminals
i and j.- A civcuil set is a set of elements contained in a circuit., B is
defined to be the collection of all possible circuit sets of a graph including
the empty set. B & P1j is a collection of all possible sets, each of which
is the Vmgsum’ * of a'set in B and a set in Pi,j with respect to terminals

i and j.
Thus a set obtained by the ring sum of any set in B and any set in B .
is in B ¢ P, and any set which cannot be obtained by the ring sum ‘ot

asethandaseth 1snot1nBe>P”

3. Properties of tevminal veliabilily funclions

Before a synthesis procedure is developed for terminal reliability func-
tions, some of the properties of, and the interrelationships between these
functions, are listed below. The proofs of these statements, (a) through
(e), can be found in reference [6].

(a) Let By be a set or the ring sum of sets in a collection of e-v+l
linearly independent circuit sets, and let S, . be a path set in B . be-
tween vertices (terminals) i and j of a graph The elements in the set
B, ® S, ; are the edges (branches) corresponding to the unprimed varia-
bles of a path term or a secondary path term of the terminal reliability
function q ;

(b) Let Bf be a collection of e-v+l linearly 1ndependent circuit sets in
Band S, ; be a path set in B ; between vertices i and j of a graph. Then,
among tf]le sets in B @ P1 obtamed from Bfand S; . by the ring sum
operation, there is at leadt one set corresponding to” every path term of
the terminal reliability function q; ;

(¢} The ring sum of a path set S . with respect to vertices 1 and j and
a path set 5 with respect to vertides j and k is either a set in P or
the element d15301nt union of a set in P, and a set in B,

(d) All sets in B of a graph G are obtalnable from any q; ; function in
G. Also, all collections of possible circuit sets obtained from different
q;,; functions in the same graph G are indentical.

(e) Let P and Py, be collections of e-v+2 linearly independent
sets in P;,j and Pjx, réspectively, in a graph G. Then all sets in Pj can
be obtained from the sets in Pgy,j and Pgjx by the ring sum operatlons

Using some. of the above properties, -the following theorems can be es-
tablished.

* Note that each canonical term includes all the variables, either primed ou unprimed.
* The ring sum §; & §, of two sets $, and S2 is the set which includes all elements either in S1 or in
S, but nor in both. ‘
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Theorvem 1: One of the terminal reliability functions q, q,, and g, of
a connected graph G* is a dependent function with respect to the other two

Pyoof: 1If any two of the three functions with respect to three terminal—
pairs consisting of three vertices in G are given; e, g., q;,;and q; re
given, then P, and Pj, are known. According to Property (e), P k can
be obtained. Tﬂlus, q; can be generated from q, . and q,, so that any
one of these three functions is a dependent function with respect to the
other two.

Theovem 2: If v is the number of vertices in a graph G*%*, then there are,
at most, v-1 independent terminal reliability functions in G.

Proof: Let 1,2,...,v be the vertices of the %raph G. If we are given q, ,,
q, «e-s 9,9 4, We can generate all other 5 v(v-1) - (v-1) functions from
tRe® glven collettion of v-1 independent functions accordlng to Theorem 1.
Thus, the theorem is true.

4. Realization of veliability functions

A terminal reliability function in the canonical form contains all terms,
each of which expresses the operating state of every branch of the network.
The canonical terms of a terminal reliability function are said to be con-
formable if and only if the function contains all the secondary path terms
associated with every path term of the function.

In synthesis, one wishes to construct a graph from a given q;,; function,
Since there exists a one-to-one correspondence between the path terms in
q; ; and the rows of a path matrix P*** between terminals i and j of the
graph G to be realized, P can be readlly obtained from q; ; by identifying
the path terms of q;,; and the problem is reduced to the realization of G
from P. Now, if a column identified by x,, is added to P as its (n+1)™
column, a new matrix, B,, results and each row of B_ represents a circuit
since any path between i and j, together with the new edge, x,, connected
across i and j of G, forms a circuit. It can be shown**3¥* that a funda-
mental circuit matrix B, can be obtained from B_ by the ring-sum operations
on the rows of By, and the task of finding G fhom Bf has been solved and
is well known [1]. Thus, the following synthesis procedure can be stated
without further discussion, ¥k

The Synthesis Procedurve. L
taining variables x

et q; ;be the given reliability function con-
12 XgeeeenX @ d let the two terminals be 1 and j.

Step 1: Identify all the path terms of q, ; and form the path matrix P between
i and j with xl,x2,.,.,xn as columnbs and P1,Pgs+.., Py @s rows where
p, corresponds to the rib path term and k is the total number of path
terms of -

Step 2: Add a column of ones to P to form the circuit matrix Bp and

* To eliminate trivial cases only connected graphs arc considered in this paper.
** Including separable graphs as well as non-separble graphs.
** The path matrix P between vertices i and j of a graph G of v vertices and e edges is defined as the
matrix P = | p. .| with k rows (corresponding to all (K) possible paths between i and j) and e columns
(corresponding 10 all the e edges) where

p, . =1 if edge j is in path i;

i
pi"]]. 0 if edge j is not in path i.

*** A detailed discussion can be fouud in Refereiices [:7], Chapter III.
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identify the added column by x .

Step 3: Find the rank of B by reducing it to the normal form using row
operations with possible rearrangement of columns. This will produce a
fundamental circuit matrix Bf:

x! x! .« .. ! ! 1
1 2 £ X1 Xy Xns1

|
= l

B, = [ U, | B :|
!

where the order x'l, XL, ..., x'n ; denotes the new sequence of the columns
after B, is obtained. (ﬁlote that the set X), Xy, ..., X constitutes a chord

set, and the set x;+ X constitutes a treebranch set.)

1 !
12 2 "0’ Xni1

Step 4: Form the fundamental cutset matrix Qf:
N

- T |
Qf - Bf_ i U
12,
I
where BE denotes the transpose of Bfm.'

12

Step 5: Form an incidence matrix A:
A=Dx Qf

where D is nonsingular ([1], [7]). This corresponds to the application of
ring-sum operations on the rows of Q; until there are no more than two
1's in each column of the transformed matrix A, If the order of Qf is
large, apply Mayeda's method [8] to transform Q, into A.

Step 6: Form the incidence matrix A, by adding a last row to A so that
each column of A, has exactly two 1l's.

Step 7: Determine the network N* from A, and then remove the edge iden-
titied by x,. This gives the desired network N which realizes the given
q;,j reliability as its function, and the two terminals i and j of N are the
endpoints of the removed edge x .

Example 1: Suppose that a given terminal reliability function g, ; has its
canonical terms represented by the table of combination in Table I, in
which each row represents a canonical term. An entry 1" under a variable
designates that the variable is unprimed and the zeros designate otherwise.
Thus the first row means p; p, Py P, Py thus giving a path set (2,4, 5).
Checking the combinations in %abﬁ.e 4I, we find that the canonical terms
are conformable, thus we can start on the path sets, which are

S, :(1):8,: (23S, :(2.4,5)

The path matrix P between vertices 1 and j is
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The matrix BP is given by

Xl X2 X3 X4 X5 XO

B, = |1 0 0 o | 1
0 | 1

1 0 1 1|1

Adding row 2 to row 3 in BP’ the matrix B; is obtained.

TABLE 1

Py Py Py Py Py

0 1 0 1 1

0 1 1 0 0

0 1 1 0 1

0 1 1 1 0

0 1 1 1 1

1 0 0 0 0

1 0 0 0 1

1 0 0 1 0

1 0 0 1 1

1 0 1 0 0

1 0 1 0 1

1 0 1 1 0

1 0 1 1 1

1 1 0 0 0

1 1 0 0 1

1 1 0 1 0

1 1 0 1 1

1 1 1 0 0

1 1 1 0 1

1 1 1 1 0

1 1 1 1 1
X X X X X X
1 9 3 4 5 0
1 0 0 0 0 1
B = |o o o0 1

—
o
o

43
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which is a fundamental circuit matrix with X,, X, X, as the branches of
the three, and xl, XZ, x3 as chords,

Thus,
' o 1 11 0 0
Qs = [B"ff '. U] =10 1 1 |
12 11 0| 0 1
Hence,
o 0 o0 1 1
A= {0 1 1 0 1
1 1 0 0 1
and
X1 X2 X3 X4 X5 XO
Alo o o 1 1 o0
Blo 1 1 0 1 0
Aac i1 1 0 0o o0 1
D{1 o 1 1 o0 1

The graph G* which includes the added element x_ is shown in Figure 1.

s Yy

B
Fig. 1. Graph G* (or N*).

Finally, with x_ removed from G#*, the desired graph G with terminals
i and j identified by the two endpoints of X 1s obtained and shown in
Figure 2.

Notice that as long as a collection of e - v + 2 independent path sets
is contained in a function, we can find a graph G to provide all the com-
munication paths specified by the function. However, the realization may
provide more paths than that specified although it might be considered a
minimal realization, since the method used here utilizes the minimum
number of branches (exactly the same number the given function calls for).
In the light of these facts, the following convention is useful.
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D (= ) arJ')
/"\
g Xy
A< X3 >c(:_jori)
Xs 0.7
\B/

Fig. 2. Graph G (or N).

Convention: If a graph G can be constructed to provide the communication
requirements specified by a given function and with the same number of
elements as the number of variables contained in the function, then the
function is considered realizable by G. If G provides only the specified
requirements of communication, the realization is considered to be "exact'',
If G is the only possible realization, the synthesis is ''unique'.

As illustrated by Example 1, the major steps of synthesizing a a; . func-
tion after checking for conformability of the canonical terms are: to' obtain
the circuit matrix B, from which B; is derived; then to get Q; and, after
chacking realizability of Q;, to construct a graph from Q;. There is no
problem of getting a matrix Q; from a given function [8]. Whether this
matrix is a fundamental cut-set matrix of a graph depends on whether this
matrix can pass Mayeda's realizability test. Thus we have the following
theorem.

Theorvem 3: A terminal reliability function, 9 p is realizable exactly if
and’ only if ’

(1) the canonical terms of q,; ; are conformable;

(2) the matrix Q; derived frdm 9,5 is a fundamental cut-set matrix.

Proof of Sufficiency: The second condition implies that Q¢ is realizable as
a fundamental cut-set matrix of a graph G [8]. Since Q, is derived from
B;, both Q; and B; correspond to the same fundamental system [1] of a
tree in G. Since By is obtained from the path sets in P, ; of the given
q; ; function, the graph G contains a pair of terminals i and j, between
which the path sets in P ; can be found. With the first condition all terms
in q; ; are guaranteed in the graph G. Thus the conditions are sufficient,

Proof of Necessity: If Q; derived from 4;,j is not realizable as a funda-
mental cut-set matrix of any graph, its corresponding B; is not a funda-
mental circuit matrix of any fundamental system with respect to any chosen
complete tree of any graph. Thus, there is no graph, which possesses a
pair of terminal vertices, between which the complete collection of path
sets P, ; corresponds exactly to that of the given q;,j function. Now even
if the second condition is satisfied, all terms in g. . must be conformable,
otherwise the realization is not. exact. b

5. Swynthesis of pavtially specified functions

As will be shown later, unique realization is guaranteed when v-1 in-
dependent but related terminal reliability functions are given. When one
(or more) of these functions is specified, realizations which are unique
within a 2-isomorphism. are possible provided that the expression of the
function contains all its canonical terms. If only some of the path terms
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of a given reliability function are given, the realization cannot be unique
or even exact., However, the realization will be minimal and will provide
the necessary communiaction paths with more than the required reliability.

As an illustration, suppose that a terminal reliability function is given

by
dj,j = PyPyP3Py Py + P1Py Py Py Py

where P, = 0.9, b, = 0.1, p, = 0.9, p, = 0.8, and p. = 0.2,

It is not possibleto realize this function exactly. But using the specified
branch reliabilities realizations giving at least the specified value of q;,j
(i.e. 0.46800) can easily be obtained. Two such realizations, G, and G
are shown in Figure 3. Graph G, gives a reliability value of 0.65304,

Py

2

(a) Ga G) Gb&

Fig. 3.

which is higher than that specified. This is due to the added reliability
given by the additional secondary path terms.

Both graphs in Figure 3 contain the circuit set (1, 2, 4, 5), and edge
3 is common to both path sets, (1, 3, 4) and (2, 3, 5). However, it is
obvious that graph G will give higher reliability as it provides more com-
munication paths, (2,4) and (1,5), in addition to those in graph G,.

6. Synthesis of velated q; functions

The synthesis of a single g;; function empasizes only two vertices in
the realization. When two or more ¢, ; functions are to be synthesized as
a related group, not only each functioll must be realizable, but they must
also be realized by the same graph. That is, we must be able to obtain
-all the given functions from the same realization,

Two terminal reliability functions are said to be compalible with one
another if and only if there exists a graph, from which these functions
can be obtained.

Suppose that two terminal reliability functions are given. Ruling out the
trivial case of two equivalent functions, there exist two possibilities. The
first is that the two given functions associate with only three terminal
vertices, e.g., they are q; and g; . The second is that they associate
with four distinct terminal vertices, e. g., q].,j and qm.

Theovem 4: Compatible terminal reliability functions possess an identical
complete collection of circuit sets.

Proof: Suppose that among the functions there exist two or more different
complete collections of circuit sets. This means that the individual real-
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izations of the functions are not all 2-isomorphic. Thus there exist no
graph to which all these functions belong, This contradicts the definition
of compatibility. Hence the theorem is true.

Covollary: An identical fundamental circuit matrix (and, thus, fundamental
cut-set matrix) can be derived from compatible terminal reliability func-
tions.

Theorem 4 or its corollary gives us a strong necessary condition for
the compatibility of terminal reliability functions.

Theovem 5: Let q; ;and q. k be two realizable functions. Then q; ; and
y are compatlble if and only if their corresponding complete collections
ofJ circuit sets are identical.

Proof: It qi, and q;, are compatible, then they correspond to the same
graph G and ]hence generate the same complete collection of circuit sets.
The sufficiency of the theorem follows from the fact that the realization
of a circuit matrix is unique to within a 2-isomorphism [1].

The condition in Theorem 5 guarantees not only the compatibility of the
two functions, q; .and q but also the generated function q,,. In fact,
if d;,x were not compatlfofe with either of its generator functions, the
generator functions could not be compatible with each other. Thus we have
the following corollary.

Corollary: If two related functions q;,; and q;, are compatible with each
other, they are also compatible with their generated function q and
conversely,

The following examples illustrate the applications of the last two theorems
in the synthesis of two related functions.

1k;

Example 2: Synthesize q and q x of which the path sets are given as

P :(3,4); (1,4,6); (5,6,7); (1,3,5,7); (2,7)

1']

Py ot (3,4,6); (1,4) (2,3,4,5); (5,7); (2,6,7)
From B o @ complete collection of circuit sets can be obtained under
ring sum operatlons as

B; : (1,3,6); (3,4,5,6,7); (1,4,5,7); (2,3,4,7); (2,5,6);

(1,2,3,5); (1,2,4,6,7).

The ring sum of the second set in P, ; and the second set in By is ob-
viously a path set, S;;: (6), in Py ") With this set and the seéls in B,
we can obtain the followmg path sets with respect to vertices i and k:

P, (6): (1,3); (3,4,5,7); (2,5); (1,2,4,7).

L,

A simple check shows that the collections of circuit sets Bjy and By
from B and P;) respectively, are identical with B;; so that they are
all equal to B of a graph, and thus, by Theorem 5 and its corollary q; y
corresponding to P, , , together w1th its generator functions q; ,and q
are compatible functlons

The circuit matrix using the circuit sets in B;; as rows is of rank 3.
Taking the three independent circuit sets, (3, 4 5,6,7), (1,4,5,7), and
(2,5,6) from B, ; we form B;:

ik’
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o
—
[en}
—

B,= [0 1 0o'o 1 1 of=|y B,
0 11 1
Thus,

el 62 €3 e4 85 66 e7

1 0 1 : 1 0 0 0

1 1 110 1 0 0

Q= [Bfl U4]= o 1 1,0 0 1 0

“ 1 0 1,0 0 0 1

The graph realizing Q; is shown in Figure 4.

Fig. 4. Realization for Example 2,

Note that, in this example, one of the path sets contains only one element
(eg across i and k) so that in the realization, we need not add a forcing
element as was done in Example 1. Terminal j can be readily identified
by inspection of any path from Pi'j (or Pj'k).

Example 3: Let it be required to synthesize i, and q of which the
path sets are given as ’ ’

P, 0 (L,5); (2,4) (1,3,4); (2,3,5)

Pt (L,4) (2,5); (1,3,5) (2,3,4).

The complete collections of circuit sets from both Pij and P, . are found
to be the same and that is ’ b

B: (1,2,4,5); (3,4,5); (1,2,3).
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The ring sum of the first set in B and P; |, gives Si,k: (4,5}, which
is a path set in P With the sets in B, one obtains
Pt (4,5) (1,2); (1,2,3).

Clearly the sets in P; ), cannot produce all the sets in B.

Although the discussions so far in this section have been concerned with
two or three functions involving three related terminal vertices, no gen-
erality has been lost. That is to say, more than three terminal reliability
functions associated with any number of similarly related terminal vertices
can be tested for compatibility and synthesized in the same manner as
previously discussed. However, there exists a limit to the number of func-
tions which can be compatible as a group after one of them is specified.
This will be shown in a later section,

7. Synthesis of q

Next, we consider simultaneously all the terminals of a given probabilistic
network. The problem to be considered is the following: If a probabilistic
network has infinite branch capacities, what is the possibility that every
pair of terminals can communicate with each other? But first, a few new
terms are defined.

Simultaneous communicalion is an event that every pair of terminals i
and j (i # j) in a network can communicate with each other in a specified
period of time. A nefwovk veliability function q, is defined to be an ex-
pression of the probability of simultaneous communication in a network.

To obtain q; from a given network, one can first determine a complete
set of trees for the network. Simultaneous communication is possible if
and only if the unprimed variables of a canonical term include those corre-
sponding to the branches of a tree, Then, by taking the sum of all canonical
terms, each of which contains a product of unprimed variables with their
associated links forming a tree or tree plus chords, the function q is
obtained. Also, the sum of all the canonical terms common to allnq,,
functions of the network is q,- t

The canonical expression of q, contains two types of terms: a free term
of g, is a canonical term in which the elements associaied with the un-
primed variables correspond to all the branches of a tree; a secondary
lree teymof q is a canonical term in which the elements associated with
the unprimed variables correspond to all the branches of a tree plus some
chords.

The canonical terms of a reliability function q, are said to be con-
formable if and only if the function contains all the secondary tree terms
associated with every tree term of the function.

It is relatively simpler to recognize tree terms of q, than path terms of
9 ; because of the fact that all tree terms contain the same number of un-
primed variables. In fact, they are terms with the least number of un-
primed variables.

The synthesis of q, will be accomplished if the corresponding collection
of tree sets in q_ are realized by a graph. To synthesize a tree matrix,
one can first derive a fundamental cut-set matrix from the tree matrix
[9]., and then synthesize the cut-set matrix as has been done previously.
Thus the procedure of synthesizing a given network reliability function is
rather straightforward.

8. Uniqueness of vealization

If a reliability function can be obtained from two or more graphs which
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are not isomoerphic, the realization of this function cannot be unique. The
realization of a terminal reliability function may or may not be unique.
However, a given terminal reliability function can possess one and only
one complete collection of circuit sets, and its realizations must contain
the same circuit sets even if they are not isomorphic., This leads to the
following theorem,

Theorem 6: The realization of a terminal reliability function is unique to
within a 2-isomorphism.

Since isomorphic graphs are also 2-isomorphic [1]_, the above theorem
does not exclude the possibility of unique realization of a function g ;.
Now, with Theorems 4, 5 and 6, the next theorem is obvious.

Theovem 7: The realization of a collection of compatible terminal reliability
functions is unique to within a 2-isomorphism.

The conditions for unique synthesis of a collection of g, i functions can
now be investigated. ’

A graph G with v vertices will have 3 v(v-1) different q, . functions.
With q; cand q; given, the third related function q, , is alrea'd]y specified
tacitly dnd can’ easily be generated. In fact, Theorém 2 shows that there
exist, at most, v-1 independent q; i functions in G. This leads to the fol-
lowing uniqueness theorem. '

Theovem 8: The realization of a set of n = v~1 independent and compatible
terminal reliability functions is unique.

Proof: If v-1 independent q; ; functions are given, all 3 v(v-1) related
functions can be obtained., This means that by inspection of the canonical
terms of the functions, every element can be identified as a '‘direct-path"
element with respect to its incident pair of vertices. Thus the one and
only one incidence matrix from this group of functions can be obtained,
and the graph corresponding to this matrix is the only realization of the
functions so that it is unique.

9, Comnclusions

In this paper, some of the properties of terminal reliability functions
have been discussed and the problem of realization of reliability functions
of a probabilistic communication network with distinct branch reliabilities
based onthese properties have been studied. Synthesis procedures for one or
more prescribed terminal reliability functions as well as network reliability
functions have been developed and subsequently illustrated by the examples.
Also, the problem of uniqueness of realization has been discussed and has
led to the result of a uniqueness theorem (Theorem 8).

It is worth noting that for a relatively complicated function, the process
of checking for conformability of canonical terms and then determining the
path terms is tedious although straightforward. However, such a difficulty
can be overcome by the use of digital computation.
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