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ABSTRACT 

This paper presents some properties and interrelationships of terminal  reliability functions of probabilistic 
communicat ion  networks with distinct e lement  reliabilities. Based on topological techniques a synthesis pro- 
cedure as well as realizabili ty conditions are given. In addition, a uniqueness theorem is proved. 

1. Introduction 

A p r o b a b i l i s t i c  c o m m u n i c a t i o n  n e t w o r k  is  a n e t w o r k  in wh ich  e a c h  b r a n c h  
i s  a s s i g n e d  a p r o b a b i l i t y  t ha t  the s p e c i f i c  b r a n c h  wi l l  f u n c t i o n  p r o p e r l y .  
T h i s  p r o b a b i l i t y  is  c a l l e d  the r e l i a b i l i t y  of  tha t  b r a n c h .  T h u s  th i s  n e t w o r k  
c a n  be r e p r e s e n t e d  b y  a w e i g h t e d  l i n e a r  g r a p h  [11 . T h e  p r o b a b i l i t y  of  
s u c c e s s f u l  c o m m u n i c a t i o n  b e t w e e n  a s p e c i f i e d  p a i r  of s t a t i o n s  ( t e r m i n a l s )  
in the  n e t w o r k ,  e x p r e s s e d  in t e r m s  of b r a n c h  r e l i a b i l i t i e s ,  i s  c a l l e d  the 
t e r m i n a l  r e l i a b i l i t y  func t ion .  

T h e  a n a l y s i s  of the r e l i a b i l i t y  of p r o b a b i l i s t i c  c o m m u n i c a t i o n  n e t w o r k s  
h a s  b e e n  s t u d i e d  by  v a r i o u s  i n v e s t i g a t o r s  [ 2 ] ,  [ 3 ] ,  [ 4 ] .  M a x w e l l  [-5-] h a s  
d i s c u s s e d  the  s y n t h e s i s  of  a p r e s c r i b e d  t e r m i n a l  r e l i a b i l i t y  f u n c t i o n  of a 
t w o - t e r m i n a l  n e t w o r k  in wh ich  a l l  b r a n c h e s  a r e  a s s u m e d  to h a v e  i d e n t i c a l  
r e l i a b i l i t i e s .  T h i s  p a p e r  wi l l  c o n s i d e r  n e t w o r k s  w i th  d i s t i n c t  b r a n c h  r e l i a -  
b i l i t i e s .  T h e  s y n t h e s i s  m e t h o d s  of a s i n g l e  p r e s c r i b e d  r e l i a b i l i t y  func t ion  
a s  w e l l  a s  two o r  m o r e  g iven  f u n c t i o n s  c o r r e s p o n d i n g  to d i f f e r e n t  p a i r s  
of  t e r m i n a l s  wi l l  be  d i s c u s s e d .  T o p o l o g i c a l  t e c h n i q u e s  a r e  u s e d  h e r e .  Al l  
t e r m s ,  i f  not  d e f i n e d  in th i s  p a p e r ,  m a y  be found in a s t a n d a r d  t e x t b o o k  
[ 1 ] .  

2. Basic definitions 

L e t  the b r a n c h  r e l i a b i l i t i e s  of  a n e t w o r k  wi th  e b r a n c h e s  be P l '  P2 . . . . .  
Pc- T h e n  Pi i s  the p r o b a b i l i t y  of  b r a n c h  j of  the  n e t w o r k  t ha t  t h i s b r a n c h  
wi l l  f unc t i dn  p r o p e r l y .  T h e  c o m p l e m e n t s  of t h e s e  v a l u e s  a r e  d e n o t e d  b y  
Pl ' . ,  Py '  . . . . .  P c "  T h e  p r o b a b i l i t y  of t r a n s m i s s i o n  b e t w e e n  any  s p e c i f i e d  
p a i r  of t e r m i n a l s ,  e x p r e s s e d  in t e r m s  of b r a n c h  r e l i a b i l i t i e s  and t h e i r  
c o m p l e m e n t s ,  i s  de f i ned  a s  a terminal reliability function, which  i s  g i v e n  
by  

qt , j  = m l P x ' P y '  " ' "  Pc '  + m y P l ' P y '  " ' "  Pc-1 Pe + ' ' ' + m y e p l p 2  . . . .  Pe (1) 
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w h e r e  m 1, m 2 ,  . . . ,  r e x ,  . . . m 2 e  a r e  e i t h e r  1 o r  0, d e p e n d i n g  on  the  

t e r m i n a l - p a i r  ( i , j ) .  T h a t  i s ,  m x i s  1 i f  i t s  a s s o c i a t e d  c o m b i n a t i o n  o f  s t a t e s  
of  the  b r a n c h e s  p r o v i d e s  a t r a n s m i s s i o n  p a t h  b e t w e e n  t h e  t e r m i n a l s  i a n d  
j ; o t h e r w i s e  m x i s  0. W h e n  a f u n c t i o n  i s  e x p r e s s e d  a s  in  e q u a t i o n  (1) ,  
i t  i s  s a i d  to  be  in  i t s  canonical form. E a c h  t e r m  i n  t h e  c a n o n i c a l  f o r m  
i s  c a l l e d  a canonical term*. A n e t w o r k  w i t h  v t e r m i n a l s  h a s  � 8 9  t e r -  
m i n a l  r e l i a b i l i t y  f u n c t i o n s  i f  the  n e t w o r k  c o r r e s p o n d s  to  a n o n o r i e n t e d  
g r a p h .  

A path set i s  a s e t  of  b r a n c h e s  of  a c o m m u n i c a t i o n  p a t h  ( p a t h ,  in  s h o r t )  
b e t w e e n  a p a i r  of  t e r m i n a l s .  A path product i s  t he  p r o d u c t  of  t h e  v a r i a b l e s  
a s s o c i a t e d  w i t h  the  e l e m e n t s  in  a p a t h  s e t .  A c a n o n i c a l  t e r m  i s  a path- 
product term ( o r  s i m p l y ,  path term) i f  i t s  u n p r i m e d  v a r i a b l e s  a r e  t h o s e  
of  a p a t h  p r o d u c t  a n d  a l l  o t h e r  v a r i a b l e s  ( i n  t h a t  t e r m )  a r e  p r i m e d  v a r i a b l e s .  
A c a n o n i c a l  t e r m  i s  a secondary path-product term ( o r  s i m p l y ,  secondary 
path term) i f  a p r o p e r  s u b s e t  of  t h e  s e t  of a l l  u n p r i m e d  v a r i a b l e s  in  t he  
t e r m  c o r r e s p o n d s  to  t h o s e  e l e m e n t s  f o r m i n g  a p a t h  s e t .  

P i  i s  d e f i n e d  to  b e  t he  c o l l e c t i o n  of  a l l  t he  p a t h  s e t s  b e t w e e n  t e r m i n a l s  
i a~'~ j. A circuit set i s  a s e t  of  e l e m e n t s  c o n t a i n e d  in  a c i r c u i t .  B i s  
d e f i n e d  to  b e  t he  c o l l e c t i o n  of  a l l  p o s s i b l e  c i r c u i t  s e t s  of a g r a p h  i n c l u d i n g  
the  e m p t y  s e t .  B * P i s  a c o l l e c t i o n  of  a l l  p o s s i b l e  s e t s ,  e a c h  of  w h i c h  l j  
i s  t he  ringsum:',:* of  a ' s e t  in  B a n d  a s e t  i n  Pi . j  w i t h  r e s p e c t  to  t e r m i n a l s  
i a n d  j .  

T h u s  a s e t  o b t a i n e d  b y  t h e  r i n g  s u m  of  a n y  s e t  i n  B a n d  a n y  s e t  in  P 
i s  in  B * P i i ,  a n d  a n y  s e t  w h i c h  c a n n o t  b e  o b t a i n e d  b y  t h e  r i n g  s u m  tbJf 
a s e t  in  B a}iH a s e t  in  P i s  n o t  i n  B | P . 

l,j l ,J  

3. Properties of terminal reliability functions 

Before a synthesis procedure is developed for terminal reliability func- 
tions, some of the properties of, and the interrelationships between these 
functions, are listed below. The proofs of these statements, (a) through 
(e), can be found in reference [6]. 

(a) Let B k be a set or the ring sum of sets in a collection of e-v+l 
linearly independent circuit sets, and let St, j be a path set in ~h;e be- 
tween vertices (terminals) i and j of a grapS. The elements in set 
B k �9 S i j are the edges (branches) corresponding to the unprimed varia- 
bles of'a path term or a secondary path term of the terminal reliability 
function qi,j. 

(b) Let Bf be a collection of e-v+l linearly independent circuit sets in 
B and Si be a path set in P between vertices i and j of a graph. Then, ,J 1,1 
among, the sets in. B $ Pi,j obtained from Bf and ,St, j by the ring sum 
operatlon, there is at least one set corresponding to every path term of 
the terminal reliability function qi,j. 

(c) The ring sum of a path set S i with respect to vertices i and j and 
�9 J] . . . .  

a path set S; ,. wlth respect to vertlces j and k is elther a set m P., or 
J , ~  . . . I,K 

the element disjoint union of a set m Pi k and a set m B. 
(d) All sets in B of a graph G are oI~tainable from any qij function in 

G. Also, all collections of possible circuit sets obtained fr}Jm different 
qi' functions in the same graph G are indentical. 

,J . . 
(e) Let Pfi and Pf k be collectlons of e-v+2 hnearly independent 

sets in Pi,j ~Jd Pj,k , r~pectively, in a graph G. Then all sets in Pi,k can 
be obtained from the sets in Pf;i,j and Pf;j,k by the ring sum operations. 

Using some of the above properties, the following theorems can be es- 
tablished. 

�9 N o t e  t h a t  e a c h  c a n o n i c a l  t e r m  i n c l u d e s  a l l  t h e  v a r i a b l e s ,  e i t h e r  p r i m e d  on u n p r i m e d .  

�9 * T h e  r i n g  s u m  S 1 @ S 2 of  two sets  S 1 a n d  S 2 is t he  l e t  w h i c h  i n c l u d e s  a l l  e l e m e n t s  e i t h e r  in S 1 or in 

S 2 b a t  no t  in b o t h .  



On the r e a l i z a t i o n  of r e l i ab i l i t y  functions of p robabi l i s t i c  c o m m u n i c a t i o n  networks 41 

Theorem 1: One of the terminal reliability functions, q .,~,] 1~,e k andotherqi{wo.k of 
a connected graph G":" is a dependent function with respecf to 

Proof: If any two of the three functions with respect to three terminal- 
pairs consisting of three vertices in G are given" e g , qi " and q. k are 

�9 . ' . . ,j J, 

gzven, then Pi and Pk are known Aecordlng to Property (e), Pi k can 
Ii " m 

be obtained. ~us, qik can be generated from q . and q., so that any 
one of these three fu~/ctions is a dependent funct~'oJn with J~espect to the 
other two. 

Theorem 2: If v is the number of vertices in a graph G ~',-'*, then there are, 
at most, v-i independent terminal reliability functions in G. 

Proof: Let i, 2 ..... v be the vertices of the graph G. If we are given ql 2' 
q , , qv I v, we can generate all other ~ v(v-l) - (v-l) functions frSm 

23 .''" -, . . 
tli8 gzven collectlon of v-i independent functions according to Theorem i. 
Thus, the theorem is true. 

4. Realizat ion of  rel iabi l i ty  functions 

A terminal reliability function in the canonical form contains all terms, 
each of which expresses the operating state of every branch of the network. 
The canonical terms of a terminal reliability function are said to be con- 
formable if and only if the function contains all the secondary path terms 
associated with every path term of the function. 

In synthesis, one wishes to construct a graph from a given qi,j function. 
Since there exists a one-to-one correspondence between the path terms in 
q i and the rows of a path matrix p--:--.-:.-.-l.- between terminals i and j of the 
graph G to be realized, P can be readily obtained from qi j by identifying 
the path terms of q,~ and the problem is reduced to the ~ealization of G 
from P. Now, if a c~lumn, identified by Xo, is added to P as its (n+l) th 
column, a new matrix, B , results and each row of B_ represents a circuit 

�9 P . I 0 

since any path between i and j, together wlth the new edge, xo, connected 
across i and j of G, forms a circuit. It can be shown-':-'** ~',-" that a funda- 
mental circuit matrix Bf can be obtained from B by the ring-sum operations 
on the rows of Bp., and the task of finding G f~Pom Bf has been solved and 
is well known [I]. Thus, the following synthesis procedure can be stated 
w i t h o u t  f u r t h e r  discussion.'-,--,--,--,- 

The Synthesis  Procedure.  L e t  q i be  the  g i v e n  r e l i a b i l i t y  f u n c t i o n  c o n -  
t a i n i n g  v a r i a b l e s  x l , x  2 . . . . .  x a n d  l e t  the  two t e r m i n a l s  be  i a n d  j .  

n 

Step 1: I d e n t i f y  a l l  the  p a t h  t e r m s  of q . .  a n d  f o r m  the  p a t h  m a t r i x  P b e t w e e n  
i �9 �9 ,,l and j wxth xl, x2, .... x n as columns and Pl,P2 ..... Pk as rows where 
Pr corresponds to the r th path term and k is the total number of path 
terms of qi,j" 

Step 2: Add a column of ones to P to form the circuit matrix Bp and 

�9 To e l i m i n a t e  t r i v i a l  cases only connec ted  graphs arc considered in this paper.  

�9 * Inc lud ing  separable  graphs as wel l  as non- sepa rb le  graphs. 

�9 ** The  path ma t r ix  P be tween  ver t ices  i and j of a graph G of v ver t ices  and e edges is def ined as the 

mat r ix  P = [P i  ~ with k rows (corresponding  to a l l  (K) possible  paths be tween  i and j) and e co lumns  
,J 

(corresponding to a l l  the  e edges) where 

P i , j  = 1 if  edge  j is in p a t h  i; 

P i , j  = 0 if  edge  j is trot in path i .  

�9 ***A de t a i l ed  discussion can be found ill References [ ' 7 ] ,  Chapte r  II1. 
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identify the added column by x o. 

Step 3: Find the rank of Bp by reducing it to the normal form using row 
operations with possible rearrangement of columns. This will produce a 
fundamental circuit matrix Bf: 

X I X ) . . . X ) 
1 2 r 

Bf = I Ur 

X T X ) 
X r +  1 �9 . . 11+1 11 

1 
I 

l' B f12 

where the order x', x' , .. . x' denotes the new sequence of the columns 
�9 I that'~le set x~, x~ x r after Bf is obtalned. (~ote ..... ' constitutes a chord 

set, and the set x' x' x' constitutes a treebranch set.) r+l J r+2 ' " " " ~ n+l 

step 4: Form the fundamental cutset matrix Qf: I ' ]  Qf B T I = I U 
f i 2  I 

I 

where BTfI2 denotes the transpose of Bfl 2 . 

Step 5: Form an incidence matrix A: 

A =DxQf 

where D is nonsingular ([I], [?]). This corresponds to t h e  application of 
ring-sum operations on the rows of Qf until there are no more than two 
l's in each column of the transformed matrix A. If the order of Qf is 
large, apply Mayeda)s method [8] to transform Qf into A. 

Step 6: Form the incidence matrix A a by adding a last row to A so that 
each column of A a has exactly two l's. 

Step_7: Determine the network N >:-" from A a and then remove the edge iden- 
tifiec~ by x o. This gives the desired network N which realizes the given 
qi,j reliability as its function, and the two terminals i and j of N are the 
endpoints of the removed edge x . 

0 

Example i: Suppose that a given terminal reliability function qi has its 
canonical terms represented by the table of combination in T~le I, in 
which each row represents a canonical term. An entry "i" under a variable 
designates that the variable is unprimed and the zeros designate otherwise. 
Thus the first row means pl P2 P3 P4~ P~ thus giving a path set (2, 4, 5). 

O . 

Checking the combinations in Table I, we fred that the canomcal terms 
are conformable, thus we can start on the path sets, which are 

S I : (I)  ; S 2 : ( 2 , 3 )  ; S 3 : ( 2 , 4 , 5 )  

The path matr ix  P between ver t ices  i and j is 

p = 

x I x 2 x3 x4 x5 LI000 I 
0 i i 0 

0 1 0 1 
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which is a fundamental circuit matrix with x4, xs, x ~ as the branches of 
the three, and x, 3 x 2, x as chords. 

Thus, 

IO 1 1 I 1 0 O l 

[ ' 1 
Qf -- B T ~ U = 0 i 1 i 0 i 0 

l 0 0 i f12 I 1 1 0 I 

Hence, 

A = 

  0011 
i 1 0 1 

1 0 0 0 

and 

A a = 

x 1 x 2 x 3 x 4 x 5 x 0 

B 0 i 1 0 1 0 

C 1 1 0 0 0 1 

D 1 0 1 1 0 1 

The graph G* which includes the added element x ~ is shown in Figalre i. 

B 

A < ~3 

B 

Fig. 1. GIaph G* (or N*). 

Finally, with x removed from G*, the desired graph G with terminals 
i and j identifie~ by the two endpoints of x is obtained and shown irl 
Figure 2. o 

Notice that as long as a collection of e - v + 2 independent path sets 
is contained in a function, we can find a graph G to provide all the com- 
munication paths specified by the function. However, the realization may 
provide more paths than that specified although it might be considered a 
minimal realization, since the method used here utilizes the minimum 
number of branches (exactly the same number the given function calls for). 
In the light of these facts, the following convention is useful. 
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Fig. 2. Graph G (or N), 

Convention: If a graph G can be constructed to provide the communication 
requirements specified by a given function and with the same number of 
elements as the number of variables contained in the function, then the 
function is considered realizable by G. If G provides only the specified 
requirements of communication, the realization is considered to be "exact". 
If G is the only possible realization, the synthesis is "unique". 

As illustrated by Example i, the major steps of synthesizing a q~ func- 
tion after checking for conformability of the canonical terms are: td'Jobtain 
the circuit matrix B~ from which Bf is derived; then to get Qf; and, after 

, . . J~ 

ehackmg reallzab111ty of Qf, to construct a graph from Qf. There is no 
problem of getting a matrix Qf from a given function [8]. Whether this 
matrix is a fundamental cut-set matrix of a graph depends on whether this 
matrix can pass Mayeda's realizability test. Thus we have the following 
theorem. 

Theorem 3: A terminal reliability function, qi,j' is realizable exactly if 
and only if 

(i) the canonical terms of q are eonformable- 
l,J . �9 

(2) the matrix Qf derived from qi,j is a fundamental cut-set matrix. 

Proof of Suf~'cieney'. The second condition implies that Qf is realizable as 
a fundamental cut-set matrix of a graph G [8]. Since Qf is derived from 
Bf, both Qf and Bf correspond to the same fundamental system [I] of a 
tree m G. Since Bf is obtained from the path sets in Pi,j of the given 
q funetion, the graph G contains a pair of terminals i and j, between 

1,j 

wlilchthe path sets in Pi, j can be found. With the first condition all terms 
in qi.j are guaranteed m the graph G. Thus the conditions are sufficient. 

Proof of Neeessily: If Qf derived from qi,j is not realizable as a funda- 
mental cut-set matrix of any graph, its corresponding Bf is not a funda- 
mental cireuit matrix of any fundamental system with respect to any chosen 
complete tree of any graph. Thus, there is no graph, which possesses a 
pair of terminal vertices, between which the complete collection of path 
sets Pi,j corresponds exactly to that of the given qi.j function. Now even 
if the second condition is satisfied, all terms in must be conformable, 
otherwise the realization is not exact, qi,j 

5. Sy~lthesis of partially specified fulTctio~s 

As will be shown later, unique realization is guaranteed when v-i in- 
dependent but related terminal reliability functions are given. When one 
(or more) of these functions is specified, realizations which are unique 
within a 2-isomorphism are possible provided that the expression of the 
function contains all its canonical terms. If only some of the path terms 
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of a given reliability function are given, the realization cannot be unique 
or even exact. However, the realization will be minimal and will provide 
the necessary communiaction paths with more than the required reliability. 

As an illustration, suppose thai a terminal reliability function is given 
by 

= ~ , + p ~ P 2 p 3  P~ q i , j  Pl  P2P3P4 P5 P4 

w h e r e  P l  = 0 . 9 ,  t>2 = 0 . 1 ,  p 3  = 0 . 9 ,  P4 = 0 . 8 ,  a n d  P5 = 0 . 2 .  
It is not possible to realize this function exactly. But using the specified 

branch reliabilities realizations giving at least the specified value of qij 
(i. e. 0. 46800) can easily be obtained. Two such realizations, G a and G b 
are shown in Figure 3. Graph G a gives a reliability value of 0.65304, 

Pz ~ Ps 

& 

Ca~ 6a (6) 6 6 

J 

Fig. 3. 

which is higher than that specified�9 This is due to the added reliability 
given by the additional secondary path terms�9 

Both graphs in Figure 3 contain the circuit set (i, 2, 4, 5), and edge 
3 is common to both path sets, (i, 3, 4)and (2, 3, 5). However, it is 
obvious that graph G b will give higher reliability as it provides more com- 
munication paths, (2,4) and (i, 5), in addition to those in graph G a. 

6. Synthesis of related qi,j functions 

The synthesis of a single qi,j function empasizes only two vertices in 
the realization�9 When two or more q functions are to be synthesized as 

�9 l,j 

a related group, not only each funehon must be realizable, but they must 
also be realized by the same graph�9 That is, we must be able to obtain 
all the given functions from the same realization. 

Two terminal reliability functions are said to be compatible with one 
another if and only if there exists a graph, from which these functions 
can be obtained. 

Suppose that two terminal reliability functions are given. Ruling out the 
trivial ease of two equivalent functions, there exist two possibilities. The 
first is that the two given functions associate with only three terminal 
vertices, e g , they are q. and q- The seeond is that they associate 

�9 " l,J . J~l~ ~ 

with four distinct terminal verhees, e.g., qi.j and qr.t" 

Theorem 4: Compatible terminal reliability functions possess an identical 
complete collection of circuit sets. 

Proof." Suppose that among the functions there exist two or more different 
complete collections of circuit sets�9 This means that the individual real~ 
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izations of the functions are not all 2-isomorphic. Thus there exist no 
graph to which all these functions belong. This contradicts the definition 
of compatibility. Hence the theorem is true. 

Corollary: An i d e n t i c a l  f u n d a m e n t a l  c i r c u i t  m a t r i x  (and,  thus ,  f u n d a m e n t a l  
c u t - s e t  m a t r i x )  can  be d e r i v e d  f r o m  c o m p a t i b l e  t e r m i n a l  r e l i a b i l i t y  f u n c -  
t ions .  

T h e o r e m  4 o r  i t s  c o r o l l a r y  g ives  us  a s t r o n g  n e c e s s a r y  cond i t i on  f o r  
the c o m p a t i b i l i t y  o f  t e r m i n a l  r e l i a b i l i t y  f u n c t i o n s .  

Theorem 5" L e t  q i and q k be two r e a l i z a b l e  f u n c t i o n s .  T h e n  q i j  and 
�9 , j  J, f q' k are compatible if and only i their corresponding complete colle~tions 

o~'circuit sets are identical. 

Proof'. If  qi i and q k a r e  c o m p a t i b l e ,  t h en  t h ey  c o r r e s p o n d  to the s a m e  
] ~  . . . 

g r a p h  G a n d ' h e n c e  g e n e r a t e  the s a m e  c o m p l e t e  c o l l e c t i o n  of c i r c u i t  s e t s .  
T h e  s u f f i c i e n c y  of the t h e o r e m  fo l lows  f r o m  the f ac t  tha t  the r e a l i z a t i o n  
of a c i r c u i t  m a t r i x  is  un ique  to wi th in  a 2 - i s o m o r p h i s m  [ 1 ] .  

The  c ond i t i on  in T h e o r e m  5 g u a r a n t e e s  no t  on ly  the c o m p a t i b i l i t y  of the 
two f unc t i ons ,  q and q - b u t  a l so  the g e n e r a t e d  func t ion  qi k" In fac t ,  
�9 1 , ]  . , . . 

i f  qi  k w e r e  not  c o m p a t i b l e  wi th  e i t h e r  of i t s  g e n e r a t o r  fuHet ions ,  the 
genez ;a to r  func t ions  cou ld  not  be c o m p a t i b l e  wi th  e a c h  o t h e r .  Th u s  we have  
the fo l lowing  c o r o l l a r y .  

Corollary: If two related functions qij and qj,k are compatible with each 
other, they are also compatible witl~ their generated function qi,k; and 
conversely. 

The following examples illustrate the applications of the last two theorems 
in the synthesis of two related functions. 

Example 2: Synthesize qi,j and qj,k of which the path sets are given as 

Pi.j : (3 ,4 )  ; ( 1 , 4 , 6 ) ;  ( 5 , 6 , 7 ) ;  ( 1 , 3 , 5 , 7 ) ;  (2 ,7)  

t~. k : (3, 4, 6); (1 ,4) ;  (2, 3, 4, 5); (5, 7); (2, 6, 7) 

F r o m  Pi . j ,  a c o m p l e t e  c o l l e c t i o n  of c i r c u i t  s e t s  can  be ob ta ined  u n d e r  
r i n g  s u m  o p e r a t i o n s  as  

Bi . j :  ( 1 , 3 , 6 ) ;  ( 3 , 4 , 5 , 6 , 7 ) ;  ( 1 , 4 , 5 , 7 ) ;  ( 2 , 3 , 4 , 7 ) ;  ( 2 , 5 , 6 ) ;  

( 1 , 2 , 3 , 5 ) ;  ( 1 , 2 , 4 , 6 , 7 ) .  

The ring sum of the second set in Pi,j and the second set insPeJ is ob- 
viously a path set, Si,k: (6), in Pi,k. With this set and the ~k in Bi, j 
we can obtain the following path sets with respect to vertices i and k: 

Pi.k: (6); (1 ,3 ) ;  (3, 4, 5, 7); (2, 5); ( 1 , 2 , 4 , 7 ) .  

A simple check shows that the collections of circuit sets Bj, k and Bi, k 
from i~, k and Pi,k respectively, are identical with Bi, j so that they are 
all equal to B of a graph, and thus, by Theorem 5 and its corollary qi,k 
corresponding to Pi k ' together with its generator functions qi,j and qj,k' 
are compatible functions. 

The circuit matrix using the circuit sets in Bi, j as rows is of rank 3. 
Taking the three independent circuit sets, (3,4,5,6,7), (1,4,5,7), and 
(2, 5, 6) from Bi. j we form Bf: 
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Thus, 

Bf = 

e e 
1 2 

li ~ 1 

0 

e e e e 
3 4 5 8 

l 
0 I 1 1 0 

0 l 0 1 1 
I 

1 1 1 1 1 

e e 
1 2 

1 1 

Qf = IBf~2 U4t= 0 1 

1 0 

e e 
3 4 

1 1 

1 0 

1 0 

1 0 

e 
7 

= B f l  2 

e e e 
5 6 

0 0 0- 

1 0 0 

0 1 0 

0 0 1 

The graph realizing Qf is shown in Figure 4. 

j 

k 

Fig. 4. Realization for Example 2, 

Note that, in this example, one of the path sets Contains only one element 
(e 6 across i and k) so that in the realization, we need not add a forcing 
element as was done in Example i. Terminal j can be readily identified 
by inspection of any path from PLJ (or Pj,k)" 

Example 3: Let  it be r equ i red  to synthes ize  qi,j and qj,k of which the 
path sets are given as 

Pi,j : (1,5); (2,4); (I, 3,4); (2, 3, 5) 

Pj.k : (1,4); (2, 5); (i, 3, 5); (2, 3,4). 

The complete collections of circuit sets from both Pi,j and P. 
to be the same and that is " j,k 

are  found 

B: (1 ,2 ,4 ,5 ) ;  (3 ,4,5) ;  (1 ,2 ,3) .  
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T h e  r i n g  s u m  of  the  f i r s t  s e t  in  P i j  and  Pj,k g i v e s  S i , k :  (4, 5), w h i c h  
is  a p a t h  s e t  in  P i ,k"  W i t h  the  s e t s  m B, one  o b t a i n s  

Pi,~ : (4, 5); (1, 2); (1, 2, 3). 

Clearly the sets in Pi, k cannot produce all the sets in B. 
Although the discussions so far in this section have been concerned with 

two or three functions involving three related terminal vertices, no gen- 
erality has been lost. That is to say, more than three terminal reliability 
functions associated with any number of similarly related terminal vertices 
can be tested for compatibility and synthesized in the same manner as 
previously discussed. However, there exists a limit to the number of func- 
tions which can be compatible as a group after one of them is specified. 
This will be shown in a later section. 

7. Synthesis of qn 

Next, we consider simultaneously all the terminals of a given probabilistic 
network. The problem to be considered is the following: If a probabilistic 
network has infinite branch capacities, what is the possibility that every 
pair of terminals can cornmunieate with each other? But first, a few new 
terms are defined. 

Simultaneous communication is an event that every pair of terminals i 
and j (i ~ j) in a network can communicate with each other in a specified 
p e r i o d  of  t i m e .  A nefwork reliability function qn i s  d e f i n e d  to  be  a n  e x -  
p r e s s i o n  of  the  p r o b a b i l i t y  o f  s i m u l t a n e o u s  c o m m u n i c a t i o n  in  a n e t w o r k .  

To obtain qn from a given network, one can first determine a complete 
set of trees for the network. Simultaneous communication is possible if 
and only if the unprimed variables of a canonical term include those corre- 
sponding to the branches of a tree. Then, by taking the sum of all canonical 
terms, each of which contains a product of unprimed variables with their 
associated links forming a tree or tree plus chords, the function qu is 
obtained. Also, the sum of all the canonical terms common to all qi j 
functions of the network is qn. 

The canonical expression of qn contains two types of terms: a tree term 
of qn is a canonical term in which the elements associated with the un- 
primed variables correspond to all the branches of a tree; a secondary 
tree term of qn is a canonical term in which the elements associated with 
the unprimed variables correspond to all the branches of a tree plus some 
chords. 

The canonical terms of a reliability function qn are said to be con- 
formable if and only if the function contains all the secondary tree terms 
associated with every tree term of the function. 

It is relatively simpler to recognize tree terms of qn than path terms of 
q because of the fact that all tree terms contain the same number of un- l,j 
prlmed varlables. In fact, they are terms with the least number of un- 
primed variables. 

The synthesis of qn will be accomplished if the corresponding collection 
of tree sets in qn are realized by a graph. To synthesize a tree matrix, 
one can first' derive a fundamental cut-set matrix from the tree matrix 
[9], and then synthesize the cut-set matrix as has been done previously. 
Thus the procedure of synthesizing a given network reliability function is 
rather straightforward. 

8. Uniqueness of realization 

If a reliability function can be obtained from two or more graphs which 
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a r e  not  i s o m o r p h i c ,  the r e a l i z a t i o n  of th i s  f unc t i on  c a n n o t  be  un ique .  T h e  
r e a l i z a t i o n  of a t e r m i n a l  r e l i a b i l i t y  func t ion  m a y  o r  m a y  not  be un ique .  
H o w e v e r ,  a g iven  t e r m i n a l  r e l i a b i l i t y  func t ion  c a n  p o s s e s s  one and  on ly  
one c o m p l e t e  c o l l e c t i o n  of c i r c u i t  s e t s ,  and i t s  r e a l i z a t i o n s  m u s t  c o n t a i n  
the  s a m e  c i r c u i t  s e t s  e v e n  if  t hey  a r e  not  i s o m o r p h i c .  T h i s  l e a d s  to the 
f o l l o w i n g  t h e o r e m .  

Theorem 6: T h e  r e a l i z a t i o n  of a t e r m i n a l  r e l i a b i l i t y  f unc t i on  i s  un ique  to 
wi th in  a 2 - i s o m o r p h i s m .  

S ince  i s o m o r p h i c  g r a p h s  a r e  a l s o  2 - i s o m o r p h i c  E l i ,  the a b o v e  t h e o r e m  
d o e s  not  e x c l u d e  the p o s s i b i l i t y  of un ique  r e a l i z a t i o n  of a f unc t i on  qi . j -  
Now,  wi th  T h e o r e m s  4, 5 and 6, the nex t  t h e o r e m  is  o b v i o u s .  

Theorem 7: The realization of a collection of compatible terminal reliability 
functions is unique to within a 2-isomorphism. 

The conditions for unique synthesis of a collection of qi./ functions can 
now be investigated. 

A graph G with v vertices will have �89 v(v-l) different qt.i functions. 
With q and  q~ k g iven ,  the t h i rd  r e l a t e d  func t ion  qi k is  a l r e a d y  s p e c i f i e d  

�9 1 J J~ �9 

taeltly gnd can easily be generated. In fact, Theorem 2 shows that there 
exist, at most, v-i independent qi,j functions in G. This leads to the fol- 
lowing uniqueness theorem. 

Theorem 8: The realization of a set of n = v-I independent and compatible 
terrninal reliability functions is unique. 

Proof: I f  v - 1  i n d e p e n d e n t  q ~ ,  f u n c t i o n s  a r e  g iven ,  a l l  �89 v ( v - 1 )  r e l a t e d  
f u n c t i o n s  can  be o b t a i n e d .  T h i s  m e a n s  tha t  by  i n s p e c t i o n  of the c a n o n i e a l  
t e r m s  of the  f u n c t i o n s ,  e v e r y  e l e m e n t  c a n  be i d e n t i f i e d  a s  a " d i r e c t ~ p a t h "  
e l e m e n t  wi th  r e s p e c t  to i t s  i n c i d e n t  p a i r  of v e r t i e e s .  T h u s  the one and 
on ly  one i n c i d e n c e  m a t r i x  f r o m  th is  g r o u p  of f u n c t i o n s  can  be o b t a i n e d ,  
and the g r a p h  c o r r e s p o n d i n g  to th i s  m a t r i x  is  the on ly  r e a l i z a t i o n  of the 
f u n c t i o n s  so  t ha t  i t  i s  un ique .  

9. Conclusions 

In this paper, some of the properties of terminal reliability functions 
have been discussed and the problem of realization of reliability functions 
of a probabilistie communication network with distinct branch reliabilities 
based onthese properties have been studied. Synthesis procedures for one or 
more prescribed terminal reliability functions as well as network reliability 
functions have been developed and subsequently illustrated by the examples. 
Also, the problem of uniqueness of realization has been discussed and has 
led to the result of a uniqueness theorem (Theorem 8). 

It is worth noting that for a relatively complicated function, the process 
of checking for eonformability of canonical terms and then determining the 
path terms is tedious although straightforward. However, such a difficulty 
can be overcome by the use of digital computation. 
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